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Motivation 

• AlGaN/GaN heterostructures have good properties for HEMTs 
 High efficiency 
 High power density 
 High operating voltages 
 High operating temperatures 
 

• Si substrates 
 Cheap 
 Easy to integrate into existing Si technologies 

 
• One problem - nanoscale fissures 

 Form due to tensile strain between AlGaN and GaN layers 
 Reduce efficiency 
 Device failure 
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What is a HEMT? 

• HEMT - High Electron Mobility Transistor 

• Fabricated from 2 semiconductor materials with different band gap 
energies 

• Can operate at higher frequencies and voltages than Si MOSFETs 

• Higher power density, efficiency and operating temperatures 

• Nitride HEMTs do not require doping to generate a 2-DEG 
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Nitride HEMTs 

 

 

 

• 2DEG arises due to polarisation difference 
between layers 
 

• Spontaneous polarisation 
• Intrinsic to the material 
• Arises due to crystal structure 

 
• Piezoelectric polarisation 

• Arises due to difference in lattice 
constants between layers 
 

• Larger 2DEG density leads to better device 
efficiency 
 

• 2DEG density controlled by applying a 
voltage to the gate contact 
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Electron Channelling Contrast Imaging 

• Sample is oriented to allow electron 
channelling – that is electrons are diffracted  

      by the crystal lattice 
 

• Changes of the crystal lattice change 
backscattered electron intensity 
 

• Diffracted backscattered electrons are used to 
produce an image showing strain associated 
with dislocations 
 

• Images also show crystal grains with different 
orientations 
 

• Depth resolution of tens of nanometers 
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≈ 35 ° - 70° 
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ECCI at different geometries 
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EHT = 30 kV  Tilt Angle 17 
500 nm 

EHT = 30 kV  Tilt Angle 55 
500 nm 

Electron channelling contrast images from a 900 nm thick GaN thin film 
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Sample Structure & Growth 

• 2 AlGaN/GaN Samples grown on a 6” Si wafer  
 Both samples grown using the same procedure 
 Sample A is uncapped 
 Sample B has a GaN capping layer 

Si substrate Si substrate 

GaN GaN 

Al0.25Ga0.75N ( 25 nm) 

GaN capping layer ( 2 nm) 

Sample A Sample B 

Al0.25Ga0.75N 
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AFM of AlGaN/GaN samples 

• Atomic force microscopy (AFM) measurements of similar capped & uncapped 
AlGaN/GaN samples 
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ECCI of AlGaN/GaN grown on Si 

• Sample A 
• Uncapped AlGaN/GaN 
• Fissure density ≈ 2 × 109 cm-2 

500 nm 500 nm 

(a) (b) 

ECCI of AlGaN surface from sample A in (a) backscatter and (b) forescatter detector geometries 

Si substrate 

GaN 

Al0.25Ga0.75N ( 25 nm) 
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ECCI of AlGaN/GaN grown on Si 

• Sample B 
• GaN capped AlGaN/GaN 
• Dislocation density ≈ 5 × 109 cm-2 

500 nm 500 nm 

ECCI of GaN cap from sample B in (a) backscatter and (b) forescatter detector geometries 

Si substrate 

GaN 

GaN capping layer (2 nm) 

Al0.25Ga0.75N 

(a) (b) 
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1 µm 

ECCI of AlGaN/GaN grown on Si 

• Extended defects parallel to sample surface present in both samples 

1 µm 

Sample A Sample B 

(a) (b) 

ECCI images of (a) sample A and (b) sample B showing extended defects parallel to the sample surface 
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Results 

• Formation of fissures on sample A most likely 
occurs during cooling after growth 
 

• GaN capping layer on Sample B prevents 
fissures from forming 
 

• Fissure density of similar number to 
dislocation density in capped sample 
 

• Backscatter ECCI detector geometry provides 
good topographic images 
 

• Forescatter ECCI detector geometry provides 
good dislocation & grain boundary contrast 
 

• Fewer dislocations visible in the BS geometry 
in the capped sample – possibly due to 
diffraction conditions 
 

• Extended defects parallel to the sample 
surface are seen in both samples – possible 
misfit dislocations or stacking faults 
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Summary 

 Nanoscale fissures are observed on the AlGaN surface 
 No fissures are observed on the GaN capped surface 
 GaN capping layer prevents formation of fissures in the AlGaN 
 Fissure density was estimated to be 2 × 109 cm-2  
 Fissures are associated with threading dislocations(TDs) and they are 

possibly due to all three types of dislocations 
 Dislocation density for the GaN capped sample was estimated to be           

5 × 109 cm-2  
 Difference in TD density between the samples is within the expected 

variance across a 6 inch wafer 
 Extended defects parallel to the surface have been observed in both 

samples 
 Further investigation is required to identify the types of dislocations in the 

samples 
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