

ECCI of AlGaN/GaN HEMT structures grown on Si

D. Thomson¹, G. Naresh-Kumar¹, B. Hourahine¹,
C. Trager-Cowan¹, P. Wright² and T. Martin²

¹Dept. Of Physics, SUPA, University of Strathclyde, Glasgow G4 ONG ²IQE, Pascal Close, St. Mellons, Cardiff. CF3 OLW. United Kingdom

Motivation

- AlGaN/GaN heterostructures have good properties for HEMTs
 - High efficiency
 - High power density
 - High operating voltages
 - High operating temperatures
- Si substrates
 - Cheap
 - Easy to integrate into existing Si technologies
- One problem nanoscale fissures
 - Form due to tensile strain between AlGaN and GaN layers
 - Reduce efficiency
 - Device failure

What is a HEMT?

- HEMT High Electron Mobility Transistor
- Fabricated from 2 semiconductor materials with different band gap energies
- Can operate at higher frequencies and voltages than Si MOSFETs
- Higher power density, efficiency and operating temperatures
- Nitride HEMTs do not require doping to generate a 2-DEG

Nitride HEMTs

- 2DEG arises due to polarisation difference between layers
- Spontaneous polarisation
 - Intrinsic to the material
 - Arises due to crystal structure
- Piezoelectric polarisation
 - Arises due to difference in lattice constants between layers
- Larger 2DEG density leads to better device efficiency
- 2DEG density controlled by applying a voltage to the gate contact

Electron Channelling Contrast Imaging

- Sample is oriented to allow electron channelling – that is electrons are diffracted by the crystal lattice
- Changes of the crystal lattice change backscattered electron intensity
- Diffracted backscattered electrons are used to produce an image showing strain associated with dislocations
- Images also show crystal grains with different orientations
- Depth resolution of tens of nanometers

ECCI at different geometries

Forescatter diffraction geometry

Electron channelling contrast images from a 900 nm thick GaN thin film

Sample Structure & Growth

- 2 AlGaN/GaN Samples grown on a 6" Si wafer
 - Both samples grown using the same procedure
 - Sample A is uncapped
 - Sample B has a GaN capping layer

Sample A

AFM of AlGaN/GaN samples

• Atomic force microscopy (AFM) measurements of similar capped & uncapped AlGaN/GaN samples

AlGaN surface

ECCI of AlGaN/GaN grown on Si

- Sample A
- Uncapped AlGaN/GaN
- Fissure density $\approx 2 \times 10^9 \text{ cm}^{-2}$

ECCI of AlGaN surface from sample A in (a) backscatter and (b) forescatter detector geometries

- Sample B
- GaN capped AlGaN/GaN
- Dislocation density $\approx 5 \times 10^9$ cm⁻²

ECCI of GaN cap from sample B in (a) backscatter and (b) forescatter detector geometries

ECCI of AlGaN/GaN grown on Si

• Extended defects parallel to sample surface present in both samples

ECCI images of (a) sample A and (b) sample B showing extended defects parallel to the sample surface

11

Results

- Formation of fissures on sample A most likely occurs during cooling after growth
- GaN capping layer on Sample B prevents fissures from forming
- Fissure density of similar number to dislocation density in capped sample
- Backscatter ECCI detector geometry provides good topographic images
- Forescatter ECCI detector geometry provides good dislocation & grain boundary contrast
- Fewer dislocations visible in the BS geometry in the capped sample – possibly due to diffraction conditions
- Extended defects parallel to the sample surface are seen in both samples – possible misfit dislocations or stacking faults

Sample B

Summary

- Nanoscale fissures are observed on the AlGaN surface
- No fissures are observed on the GaN capped surface
- GaN capping layer prevents formation of fissures in the AlGaN
- Fissure density was estimated to be 2 × 10⁹ cm⁻²
- Fissures are associated with threading dislocations(TDs) and they are possibly due to all three types of dislocations
- Dislocation density for the GaN capped sample was estimated to be 5 × 10⁹ cm⁻²
- Difference in TD density between the samples is within the expected variance across a 6 inch wafer
- Extended defects parallel to the surface have been observed in both samples
- Further investigation is required to identify the types of dislocations in the samples

University of **Strathclyde** Glasgow

